

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N-Dicyclohexylcyclohexanecarboxamide

Sohail Saeed,^a* Naghmana Rashid,^a Rizwan Hussain,^b Jerry P. Jasinski^c and Amanda C. Keeley^c

^aChemistry Department, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, ^bNational Engineering & Scientific Commission, PO Box 2801, Islamabad, Pakistan, and ^cDepartment of Chemistry, Keene State College, 220 Main Street, Keene, NH 03435-2001, USA Correspondence e-mail: sohail262001@yahoo.com

Received 18 June 2012; accepted 19 June 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.123; data-to-parameter ratio = 17.7.

In the title compound, C₁₉H₃₃NO, all three cyclohexane rings adopt chair conformations. The crystal packing features weak C-H···O interactions, forming a supramolecular chain along the c axis.

Related literature

For related studies of N-substituted benzamides, see: Saeed et al. (2011a,b). For a related structure, see: Saeed et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data C19H33NO

 $M_r = 291.46$

Z = 4

Cu $K\alpha$ radiation

 $0.44 \times 0.38 \times 0.18 \text{ mm}$

 $\mu = 0.50 \text{ mm}^{-1}$

T = 173 K

Monoclinic, $P2_1/c$ a = 9.8237 (3) Å b = 16.8736 (5) Å c = 10.8886 (3) Å $\beta = 102.890 \ (3)^{\circ}$ V = 1759.42 (10) Å³

Data collection

Agilent Xcalibur Eos Gemini	10594 measured reflections
diffractometer	3369 independent reflections
Absorption correction: multi-scan	3023 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Agilent, 2012)	$R_{\rm int} = 0.028$
$T_{\min} = 0.940, \ T_{\max} = 1.000$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 190 parameters $wR(F^2) = 0.123$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^-$ S = 1.05 $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$ 3369 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O1^i$	0.98	2.44	3.3861 (13)	163
Symmetry code: (i)	$x_{1} - y + \frac{1}{2}, z - \frac{1}{2}$			·

try ode: (1) $x, -y + \frac{1}{2}, z - \frac{1}{2}$

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5114).

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, 0279.
- Saeed, S., Rashid, N., Hussain, R. & Wong, W.-T. (2012). Acta Cryst. E68, o26. Saeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67,
- 01194
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o2215 [doi:10.1107/S1600536812027766]

N,N-Dicyclohexylcyclohexanecarboxamide

Sohail Saeed, Naghmana Rashid, Rizwan Hussain, Jerry P. Jasinski and Amanda C. Keeley

Comment

In connection with on-going studies into *N*-substituted benzamides (Saeed *et al.*, 2011*a*; Saeed *et al.*, 2011*b*), we recently determined the crystal structure of *N*-(4-bromophenyl)-3,5-dinitrobenzamide (Saeed *et al.*, 2012). In this paper we present the crystal structure of the title compound, (I).

In (I), Fig. 1, all three cyclohexane groups adopt a chair conformation with puckering parameters Q, θ and φ of 0.5850 (14) Å, 0.00 (14)°, and 320 (10)° (C2–C7); 0.517 (13) Å, 178.40 (13)° and 237 (4)° (C8–C13); 0.5747 (15) Å, 0.54 (15)°, and 120 (14)° (C14–C19), respectively (Cremer & Pople, 1975). Crystal packing is stabilized by weak C—H…O intermolecular interactions (Table 1) forming a 1-D supramolecular chain along the *c* axis (Fig. 2).

Experimental

To a 250 ml round bottom flask fitted with a condenser was added dicyclohexyl amine (0.01 mol), dichloromethane (15 ml) and triethylamine (0.5 ml) with magnetic stirring. Cyclohexanoyl chloride (0.01 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as white powder, which was washed three times with water. Recrystallization from ethyl acetate produced the crystals of the title compound.

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.98 Å (CH) or 0.97 Å (CH₂). The isotropic displacement parameters for these atoms were set to 1.20–1.21 (CH) or 1.18–1.20 (CH₂) times U_{eq} of the parent atom.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO* (Agilent, 2012); data reduction: *CrysAlis RED* (Agilent, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound viewed along the *a* axis. Dashed lines indicate weak C—H···O interactions forming a 1-D chain along the *c* axis. Remaining H atoms have been removed for clarity.

N,N-Dicyclohexylcyclohexanecarboxamide

Crystal data	
C ₁₉ H ₃₃ NO $M_r = 291.46$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.8237 (3) Å b = 16.8736 (5) Å c = 10.8886 (3) Å $\beta = 102.890$ (3)° V = 1759.42 (10) Å ³	F(000) = 648 $D_x = 1.100 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 5299 reflections $\theta = 4.2-71.1^{\circ}$ $\mu = 0.50 \text{ mm}^{-1}$ T = 173 K Chunk, colourless $0.44 \times 0.38 \times 0.18 \text{ mm}$
Z = 4	
Data collection	
Agilent Xcalibur Eos Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 16.1500 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2012) $T_{\min} = 0.940, T_{\max} = 1.000$	10594 measured reflections 3369 independent reflections 3023 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 71.3^{\circ}, \theta_{min} = 4.6^{\circ}$ $h = -11 \rightarrow 9$ $k = -20 \rightarrow 18$ $l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
S = 1.05	H-atom parameters constrained
3369 reflections	$w = 1/[\sigma^2(F_o^2) + (0.073P)^2 + 0.3063P]$
190 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. Agilent Technologies, (2012). CrysAlisPro, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.32349 (9)	0.15353 (5)	0.74526 (8)	0.0246 (2)	
01	0.41858 (10)	0.24422 (5)	0.89266 (8)	0.0357 (2)	
C1	0.41307 (11)	0.21416 (6)	0.78858 (10)	0.0248 (2)	
C2	0.51580 (11)	0.24121 (6)	0.71036 (10)	0.0247 (2)	
H2	0.4683	0.2412	0.6211	0.030*	
C3	0.63773 (12)	0.18184 (7)	0.73050 (12)	0.0316 (3)	
H3A	0.6814	0.1789	0.8195	0.038*	
H3B	0.6021	0.1296	0.7032	0.038*	
C4	0.74652 (13)	0.20629 (8)	0.65716 (13)	0.0383 (3)	
H4A	0.8240	0.1693	0.6747	0.046*	
H4B	0.7053	0.2044	0.5675	0.046*	
C5	0.80004 (13)	0.28975 (8)	0.69353 (13)	0.0395 (3)	
H5A	0.8490	0.2905	0.7814	0.047*	
H5B	0.8654	0.3052	0.6430	0.047*	
C6	0.67966 (14)	0.34838 (7)	0.67307 (12)	0.0371 (3)	
H6A	0.6355	0.3506	0.5841	0.045*	
H6B	0.7154	0.4008	0.6992	0.045*	
C7	0.57121 (13)	0.32470 (7)	0.74771 (11)	0.0307 (3)	
H7A	0.4945	0.3622	0.7312	0.037*	
H7B	0.6134	0.3261	0.8372	0.037*	
C8	0.29903 (11)	0.12078 (6)	0.61624 (10)	0.0233 (2)	
H8	0.3593	0.1500	0.5715	0.028*	
С9	0.33861 (12)	0.03328 (7)	0.61448 (11)	0.0292 (3)	

H9A	0.2805	0.0024	0.6578	0.035*
H9B	0.4352	0.0263	0.6586	0.035*
C10	0.31939 (13)	0.00374 (7)	0.47898 (12)	0.0340 (3)
H10A	0.3821	0.0323	0.4374	0.041*
H10B	0.3430	-0.0521	0.4795	0.041*
C11	0.16953 (14)	0.01560 (8)	0.40628 (12)	0.0369 (3)
H11A	0.1076	-0.0167	0.4434	0.044*
H11B	0.1606	-0.0014	0.3197	0.044*
C12	0.12716 (15)	0.10224 (8)	0.40858 (12)	0.0381 (3)
H12A	0.0298	0.1079	0.3662	0.046*
H12B	0.1825	0.1337	0.3632	0.046*
C13	0.14821 (12)	0.13330 (7)	0.54369 (11)	0.0286 (3)
H13A	0.1259	0.1893	0.5419	0.034*
H13B	0.0853	0.1058	0.5864	0.034*
C14	0.23915 (12)	0.11819 (6)	0.82848 (10)	0.0257 (3)
H14	0.1855	0.0750	0.7804	0.031*
C15	0.13228 (13)	0.17564 (7)	0.86046 (12)	0.0334 (3)
H15A	0.0738	0.1963	0.7833	0.040*
H15B	0.1803	0.2199	0.9082	0.040*
C16	0.04124 (15)	0.13386 (9)	0.93748 (13)	0.0417 (3)
H16A	-0.0231	0.1717	0.9604	0.050*
H16B	-0.0132	0.0928	0.8866	0.050*
C17	0.12985 (17)	0.09710 (9)	1.05623 (13)	0.0473 (4)
H17A	0.0699	0.0692	1.1015	0.057*
H17B	0.1780	0.1387	1.1106	0.057*
C18	0.23659 (16)	0.03963 (9)	1.02435 (13)	0.0445 (3)
H18A	0.1883	-0.0047	0.9769	0.053*
H18B	0.2947	0.0190	1.1017	0.053*
C19	0.32894 (13)	0.08035 (8)	0.94690 (12)	0.0342 (3)
H19A	0.3852	0.1208	0.9976	0.041*
H19B	0.3915	0.0417	0.9230	0.041*

Atomic displacement parameters $(Å^2)$

_	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0262 (5)	0.0280 (5)	0.0215 (5)	-0.0046 (4)	0.0095 (4)	-0.0030 (3)
01	0.0446 (5)	0.0404 (5)	0.0246 (4)	-0.0135 (4)	0.0129 (4)	-0.0098 (3)
C1	0.0266 (5)	0.0262 (5)	0.0217 (5)	-0.0017 (4)	0.0054 (4)	-0.0009 (4)
C2	0.0260 (5)	0.0269 (5)	0.0213 (5)	-0.0051 (4)	0.0053 (4)	-0.0025 (4)
C3	0.0292 (6)	0.0282 (6)	0.0379 (6)	-0.0031 (5)	0.0087 (5)	-0.0028 (5)
C4	0.0292 (6)	0.0391 (7)	0.0497 (8)	-0.0049 (5)	0.0151 (5)	-0.0089 (6)
C5	0.0312 (6)	0.0454 (7)	0.0439 (7)	-0.0142 (5)	0.0129 (5)	-0.0067 (6)
C6	0.0437 (7)	0.0309 (6)	0.0386 (7)	-0.0138 (5)	0.0133 (5)	-0.0035 (5)
C7	0.0360 (6)	0.0265 (6)	0.0309 (6)	-0.0062 (5)	0.0104 (5)	-0.0038 (4)
C8	0.0249 (5)	0.0251 (5)	0.0214 (5)	-0.0045 (4)	0.0083 (4)	-0.0027 (4)
C9	0.0288 (6)	0.0295 (6)	0.0291 (6)	0.0023 (4)	0.0059 (4)	-0.0039 (4)
C10	0.0374 (7)	0.0314 (6)	0.0344 (7)	-0.0002 (5)	0.0109 (5)	-0.0101 (5)
C11	0.0402 (7)	0.0367 (7)	0.0319 (6)	-0.0079 (5)	0.0039 (5)	-0.0111 (5)
C12	0.0425 (7)	0.0395 (7)	0.0276 (6)	0.0021 (5)	-0.0022 (5)	-0.0024 (5)
C13	0.0301 (6)	0.0276 (6)	0.0273 (6)	0.0012 (4)	0.0050 (5)	-0.0001 (4)

supplementary materials

C14	0.0279 (6)	0.0278 (5)	0.0233 (5)	-0.0041 (4)	0.0101 (4)	-0.0010 (4)
C15	0.0339 (6)	0.0362 (6)	0.0345 (6)	0.0019 (5)	0.0171 (5)	0.0011 (5)
C16	0.0394 (7)	0.0505 (8)	0.0424 (7)	-0.0029 (6)	0.0245 (6)	-0.0021 (6)
C17	0.0567 (9)	0.0587 (9)	0.0332 (7)	-0.0126 (7)	0.0242 (6)	0.0014 (6)
C18	0.0524 (8)	0.0470 (8)	0.0359 (7)	-0.0061 (6)	0.0132 (6)	0.0137 (6)
C19	0.0342 (6)	0.0383 (7)	0.0307 (6)	-0.0018 (5)	0.0085 (5)	0.0064 (5)

Geometric parameters (Å, °)

N1C1	1.3634 (14)	C10—C11	1.5212 (18)
N1—C8	1.4785 (13)	C10—H10A	0.9700
N1	1.4826 (13)	C10—H10B	0.9700
O1—C1	1.2317 (13)	C11—C12	1.5218 (18)
C1—C2	1.5283 (15)	C11—H11A	0.9700
C2—C7	1.5322 (14)	C11—H11B	0.9700
C2—C3	1.5392 (16)	C12—C13	1.5316 (16)
C2—H2	0.9800	C12—H12A	0.9700
C3—C4	1.5267 (17)	C12—H12B	0.9700
С3—НЗА	0.9700	C13—H13A	0.9700
С3—Н3В	0.9700	C13—H13B	0.9700
C4—C5	1.5243 (18)	C14—C15	1.5252 (16)
C4—H4A	0.9700	C14—C19	1.5300 (16)
C4—H4B	0.9700	C14—H14	0.9800
C5—C6	1.520 (2)	C15—C16	1.5279 (16)
С5—Н5А	0.9700	C15—H15A	0.9700
С5—Н5В	0.9700	C15—H15B	0.9700
C6—C7	1.5302 (17)	C16—C17	1.521 (2)
С6—Н6А	0.9700	C16—H16A	0.9700
C6—H6B	0.9700	C16—H16B	0.9700
С7—Н7А	0.9700	C17—C18	1.524 (2)
С7—Н7В	0.9700	C17—H17A	0.9700
C8—C9	1.5279 (15)	C17—H17B	0.9700
C8—C13	1.5302 (15)	C18—C19	1.5323 (17)
C8—H8	0.9800	C18—H18A	0.9700
C9—C10	1.5286 (16)	C18—H18B	0.9700
С9—Н9А	0.9700	C19—H19A	0.9700
С9—Н9В	0.9700	C19—H19B	0.9700
C1—N1—C8	124.39 (9)	C11-C10-H10B	109.5
C1—N1—C14	119.73 (9)	C9—C10—H10B	109.5
C8—N1—C14	115.84 (8)	H10A—C10—H10B	108.1
O1—C1—N1	121.32 (10)	C10-C11-C12	110.75 (10)
O1—C1—C2	119.40 (10)	C10-C11-H11A	109.5
N1—C1—C2	119.13 (9)	C12—C11—H11A	109.5
C1—C2—C7	111.49 (9)	C10-C11-H11B	109.5
C1—C2—C3	108.41 (9)	C12—C11—H11B	109.5
C7—C2—C3	109.97 (9)	H11A—C11—H11B	108.1
С1—С2—Н2	109.0	C11—C12—C13	111.45 (10)
С7—С2—Н2	109.0	C11—C12—H12A	109.3
С3—С2—Н2	109.0	C13—C12—H12A	109.3

C4—C3—C2	111.28 (10)	C11—C12—H12B	109.3
С4—С3—НЗА	109.4	C13—C12—H12B	109.3
С2—С3—НЗА	109.4	H12A—C12—H12B	108.0
C4—C3—H3B	109.4	C8—C13—C12	110.87 (10)
С2—С3—Н3В	109.4	C8—C13—H13A	109.5
НЗА—СЗ—НЗВ	108.0	C12—C13—H13A	109.5
C5—C4—C3	110.79 (10)	C8—C13—H13B	109.5
C5—C4—H4A	109.5	C12—C13—H13B	109.5
C3—C4—H4A	109.5	H13A—C13—H13B	108.1
C5—C4—H4B	109.5	N1—C14—C15	113.01 (9)
C3—C4—H4B	109.5	N1—C14—C19	112.78 (9)
H4A—C4—H4B	108.1	C15—C14—C19	111.69 (10)
C6—C5—C4	110.57 (10)	N1—C14—H14	106.2
С6—С5—Н5А	109.5	C15—C14—H14	106.2
С4—С5—Н5А	109.5	C19—C14—H14	106.2
С6—С5—Н5В	109.5	C14—C15—C16	110.43 (10)
C4—C5—H5B	109.5	C14—C15—H15A	109.6
H5A—C5—H5B	108.1	C16—C15—H15A	109.6
C5—C6—C7	111.31 (10)	C14—C15—H15B	109.6
С5—С6—Н6А	109.4	C16—C15—H15B	109.6
С7—С6—Н6А	109.4	H15A—C15—H15B	108.1
С5—С6—Н6В	109.4	C17—C16—C15	111.15 (11)
С7—С6—Н6В	109.4	C17—C16—H16A	109.4
H6A—C6—H6B	108.0	C15—C16—H16A	109.4
C6—C7—C2	110.33 (10)	C17—C16—H16B	109.4
С6—С7—Н7А	109.6	C15—C16—H16B	109.4
С2—С7—Н7А	109.6	H16A—C16—H16B	108.0
С6—С7—Н7В	109.6	C16—C17—C18	111.00 (11)
С2—С7—Н7В	109.6	C16—C17—H17A	109.4
H7A—C7—H7B	108.1	C18—C17—H17A	109.4
N1—C8—C9	112.66 (9)	C16—C17—H17B	109.4
N1-C8-C13	111.86 (9)	C18—C17—H17B	109.4
C9—C8—C13	110.29 (9)	H17A—C17—H17B	108.0
N1—C8—H8	107.2	C17—C18—C19	111.22 (11)
С9—С8—Н8	107.2	C17—C18—H18A	109.4
С13—С8—Н8	107.2	C19—C18—H18A	109.4
C8—C9—C10	110.50 (9)	C17—C18—H18B	109.4
С8—С9—Н9А	109.6	C19—C18—H18B	109.4
С10—С9—Н9А	109.6	H18A—C18—H18B	108.0
С8—С9—Н9В	109.6	C14—C19—C18	110.50 (10)
С10—С9—Н9В	109.6	C14—C19—H19A	109.6
H9A—C9—H9B	108.1	C18—C19—H19A	109.6
C11—C10—C9	110.87 (10)	C14—C19—H19B	109.6
C11—C10—H10A	109.5	C18—C19—H19B	109.6
C9—C10—H10A	109.5	H19A—C19—H19B	108.1
C8—N1—C1—O1	172.53 (10)	N1-C8-C9-C10	-176.70 (9)
C14—N1—C1—O1	-5.19 (16)	C13—C8—C9—C10	57.54 (12)
C8—N1—C1—C2	-11.91 (16)	C8—C9—C10—C11	-57.93 (13)

C14—N1—C1—C2	170.37 (9)	C9—C10—C11—C12	56.68 (14)
O1—C1—C2—C7	-23.63 (15)	C10-C11-C12-C13	-55.58 (15)
N1-C1-C2-C7	160.73 (10)	N1-C8-C13-C12	177.46 (9)
O1—C1—C2—C3	97.56 (12)	C9—C8—C13—C12	-56.32 (12)
N1—C1—C2—C3	-78.08 (12)	C11—C12—C13—C8	55.60 (14)
C1—C2—C3—C4	-178.71 (9)	C1—N1—C14—C15	65.94 (13)
C7—C2—C3—C4	-56.59 (12)	C8—N1—C14—C15	-111.97 (11)
C2—C3—C4—C5	56.50 (14)	C1—N1—C14—C19	-61.92 (13)
C3—C4—C5—C6	-56.37 (15)	C8—N1—C14—C19	120.17 (10)
C4—C5—C6—C7	57.27 (14)	N1-C14-C15-C16	175.50 (10)
C5—C6—C7—C2	-57.68 (13)	C19—C14—C15—C16	-56.07 (14)
C1—C2—C7—C6	176.91 (9)	C14—C15—C16—C17	56.40 (15)
C3—C2—C7—C6	56.63 (12)	C15—C16—C17—C18	-56.75 (16)
C1—N1—C8—C9	118.68 (11)	C16—C17—C18—C19	56.23 (16)
C14—N1—C8—C9	-63.52 (12)	N1-C14-C19-C18	-175.89 (10)
C1—N1—C8—C13	-116.41 (11)	C15—C14—C19—C18	55.56 (14)
C14—N1—C8—C13	61.39 (12)	C17—C18—C19—C14	-55.32 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C2—H2…O1 ⁱ	0.98	2.44	3.3861 (13)	163

Symmetry code: (i) x, -y+1/2, z-1/2.